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Abstract-Shock-excited vibrations of a conservative Duffing oscillator are examined in application
to shock protection of a vulnerable product during accidental drop. We show that a hard charac
teristic of the oscillator might be advisable for a product which is able to withstand high accelerations
(decelerations), while the maximum displacement has to be made small by any means. On the other
hand, application of a spring with a soft characteristic can result in appreciably lower maximum
accelerations (decelerations) than in a linear system and therefore can be recommended in the case
when the requirement for the lowest displacement possible is not very stringent. However, if the
drop height is not known with certainty (which is typically the case) the advantages of a soft spring
cannot be utilized to the full extent, because of the possibility of a "rigid impact". In such a case a
probabilistic approach can be effectively used to design a soft spring with a low enough probability
of a rigid impact. The obtained results can be helpfUl. particularly, when designing spring protectors
in portable electronics. The author believes that these results can be useful for a rather broad class
of nonlinear springs. not necessarily with cubic restoring forces. Copyright 'J-j 1996 Published by
Elsevier Science Ltd.

INTRODUCTION

Dynamic loading often plays a critical role in the functional performance and mechanical
reliability of electronic components and devices (see e.g. Steinberg (1988), Suhir and Lee
(1990), Engel (1993), Suhir (1992, 1993), Suhir and Burke (1994). Such loading can be
caused by accidental mishandling or misuse of the equipment in service, or can occur during
its manufacturing, testing, or shipment (transportation). In military applications, dynamic
loading occurs even during normal operation of the electronic equipment (Military Hand
book,1987).

The ability to predict and, possibly, to minimize the adverse consequences of dynamic
loading on electronic equipment and devices is especially important for portable products.
This is due not only to the fact that these products could be easily dropped, but, more
importantly, because the maximum displacement ("stopping distance") of vulnerable struc
tural elements employed in portable electronic products, when subjected to shock loads,
has to be made very short. Therefore such elements can experience very high accelerations
and, as a consequence of that, elevated dynamic stresses.

It has been shown (Suhir and Burke, 1994) that if a linear shock protector (spring) is
used, the product of the maximum displacement, X",u" and the maximum acceleration
(deceleration), x",a\ (this product can be used as a suitable characteristic of the "quality"
of a shock protector), is equal to

R = xlII"\.",,,a\ = - 2gH, (I)

where 9 is the acceleration due to gravity, and H is the drop height. Neither the spring
constant K of the protector, nor the mass AI of the element enter this formula. Hence, as
long as a linear spring is used, very little can be done to optimize the dynamic response of
the system.

Note that the relationship (I) simply follows from the equation of motion
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and the equation

E. Suhir

M.x+Kx = 0, (2)

(3)

of the energy balance at the moment of time when the initial potential energy (left part of
this equation) is completely exhausted and is transferred into the strain energy (right part
of the equation). Indeed, from (2) we have:

where

wo=/E

(4)

(5)

is the vibration frequency. Then the formula (I) can be obtained by writing the eqn (3),
with consideration of (5), as

_ 'v 2gH
\"/(1\ ==-

Wo
(6)

and eliminating the frequency Wo from the eqns (4) and (6). The eqn (2) reflects an obvious
assumption that the drop height H is substantially larger than the value

(7)

and therefore the induced acceleration (deceleration) is significantly larger than g. This is
usually the case in actual situations (Suhir and Burke (1994)).

The formula for the maximum linear acceleration (deceleration), .xma" can be obtained
from (4) and (6) as

(8)

Note that the formulas (6) and (8) for the maximum displacement and the maximum
acceleration were obtained without solving the eqn (2), i.e. without obtaining the
expressions for the displacement and the acceleration for each moment of time.

The primary objective of the analysis which follows is to find out whether application
of a nonlinear spring can lead to an appreciable reduction in the product R of the maximum
displacement and the maximum acceleration. The analysis is limited, for the sake of
simplicity, to the case of a Duffing oscillator (see, e.g., Stoker (1950))

.X+W~X+exx' = O. (9)

where the parameter ex of the nonlinearity can be either positive (hard characteristic) or
negative (soft characteristic). The initial conditions are:

x(O) = 0, .\"(0) = j2gH. (10)

It is believed that the trends founds in this analysis hold, at least qualitatively. for a rather
broad class of nonlinear springs, not necessarily with cubic restoring forces.
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ANALYSIS
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Hard spring
The solution to the eqn (9) can be sought, using elliptic functions (Suhir (l992,a,b)),

in the form:

, .j2gH .j2gH
x = ---l'flcn((Jl+£,k) = ---I'flcnu,

W o W o
(II)

where cnu is the elJiptic cosine (see, e.g. Bateman and Erdelyi (1995)), k is the modulus of
the elliptic function, £ is the initial phase angle, (J is the frequency parameter, and I'fl is the
factor which considers the effect of the nonlinearity on the amplitude of vibrations
(maximum displacement). From (II), using the rules of the differentiation of the elliptic
functions, we obtain:

12gH
:i: = - _v--'1I(Jsnudnu,

Wo

.j2gH, , ,
_" = - ---'1I(J-cnu(l-2k"sn-u),

Wo

(12)

(13)

where snu is the elliptic sine, and dnu = vi I - k 2sn 2 u is the function of delta-amplitude.
Substituting (II) and (13) into the eqn (9), and using the initial conditions (10), we

obtain the following relationships for the parameters (J and k

4,~-~-) 4,'-

(J = Wov 1+ O:l'fi = wov 1+ 20:,

and the following equation for the factor '11 :

422 2
'11+-:'11--:=0.

':1 ':1

In these relationships,

_ 2gH
':1=':1--

wci

is the dimensionless parameter of nonlinearity. The eqn (16) yields:

( 14)

(15)

(16)

(17)

(18)

In the case of a hard spring, the maximum acceleration always takes place at the same
moment of time as the maximum displacement, and can be determined directly from the
eqn (9):

(19)

Here the factor
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(20)

reflects the effect of the nonlinearity on the maximum acceleration.
The product of the maximum displacement and the maximum acceleration is

R = xmaxXmu\ = '1 p ( -2gH),

where the factor

(21)

1+ 25: - ,-/I + 25:
'7p =5:

2~J+2i

I +}I +25:
(22)

accounts for the effect of the nonlinearity on this product.

Soft spring
In the case of a soft spring, the solution to the eqn (9) can be sought in the form:

where the notation is the same as in the previous section. By differentiation, we find:

/2gH
,x- =~- '11 (Jcnu dnu,

Wo

(23)

(24)

(25)

Substituting (23) and (25) into the eqn (9), and considering the initial conditions (10), we
obtain the following formulas for the parameters (J and k:

I " I !I 5:'11 '1--)1-25:

k='.)2(5:'1f-I)=~ 2}1-25:'

and the following equation for the factor '11 :

This equation yields:

Ji'-Vl - 25:
'11 = _ .

'Y.

(26)

(27)

(28)

(29)

In order to determine the maximum acceleration we differentiate the eqn (9) with
respect to time t
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(30)

and equate the obtained expression to zero. The condition .x: = 0 indicates that the (absol
ute) maxima of the acceleration (deceleration) .\' occur in two cases: (I) when x = 0 and
(2) when

and the displacement is equal to

, _ _ WI) _ 1 ..j2gH
x - X* - ,r- - ; _ -(-v- .

V 3:x V 3:x 0

(31 )

(32)

This value can be substantially smaller than the maximum displacement X ma '.

In the first case, the maximum acceleration occurs simultaneously with the maximum
displacement and can be evaluated as

(33)

where the factor

(34)

considers the effect of the nonlinearity on the maximum acceleration. The product of the
maximum displacement and the maximum acceleration is still given by the eqn (21), in
which, however, the factor YIp, reflecting the effect of the nonlinearity, is expressed as:

2y l-2i

l+~'
(35)

As evident from the formulae (29), (34), and (35). the motions cease to be vibrational,
when the parameter IX exceeds 1/2.

In the second case, i.e. in the case when the condition (31) is fulfilled. the maximum
acceleration can be evaluated by the formula:

, 1 2 wi~
.\' = ."* = v' x +:xx·- ( o· * . * = -1 r--' =. v 3:x

2wo,J2iii

3j3x
(36)

The ratio of the maximum displacement X nwx (occurring at the end of the "breaking
time"), to the displacement X* (occurring at the moment of time when the acceleration
reaches its maximum) is

(37)

This ratio is equal to unity when the parameter IX of nonlinearity is equal to
IX = 5/18 = 0.2778. This means that for a system characterized by a dimensionless parameter
IX of nonlinearity not exceeding this value, the maximum acceleration occurs at the moment
of time when x = X max (i.e. when the velocity .X- is zero). and can be evaluated either by the
formula (33) or by the formula (36). For systems characterized by IX values exceeding
,x = 0.2778, the maximum displacement X ma ' is greater than the displacement X* (which
takes place at the moment of time when the maximum_acceleration occurs). In the extreme
case of IX = 0.5 the ratio (37) becomes as high as ./3 = 1.7321. In a situation when the
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maximum displacement X max is greater than the value X* predicted by the formula (32), the
maximum acceleration occurs at the moment of time when the displacement x is equal to
X*. This acceleration can be computed by the formula (36), which for a = 0.2778, yields:

."* = -0.7307wo)2gH.

This value is by a factor of O. 7307 smaller than the maximum acceleration in a linear system.
In the extreme case of a = 0.5 the formula (36) yields:

which is by a factor of 0.5443 smaller than the maximum acceleration in a linear system.
The product of the maximum displacement and the maximum acceleration in a system

for which i > 0.2778 is

where the factor

(37)

0.2778 ~ i ~ 0.5, (38)

considers the effect of the nonlinearity. It should be pointed out that in the case i > 0.2778
the maximum acceleration x* occurs earlier than the maximum displacement X man so that
the maximum displacement X max and the maximum acceleration x* are computed for
different moments of time. As follows from the formula (38), the factor '1p changes from
'Ip = 0.8, when i = 0.2778, to '1p = 0.7698, when a = 0.5c'- The analysis of this formula
indicates that the factor '1P has its minimum value '11' = 1/)2 = 0.7071, when the parameter
i is equal to i = ~ = 0.4444.

The results of the performed analysis indicate that the formulae (18), (20), and (22),
obtained for the case of a spring with a hard characteristic. are applicable in the case of a
spring with a soft characteristic as well, if the values of the parameter of nonlinearity IX are
simply extended into the area of negative a values. The calculated factors '71, '12, and '7p ,

which reflect the effect of the nonlinearity on the maximum displacement, maximum
acceleration, and their product, respectively. are shown for differenti values in Table I
and plotted in Fig. I.

DISCUSSION

As evident from the calculated data. a spring with a hard characteristic results in
appreciably lower displacements and significantly higher accelerations than a linear spring.
The cumulative effect of the application of a hard spring is such, that the adverse effect of
the nonlinearity on the maximum acceleration exceeds its favorable effect on the maximum

-0.5

ryl " 2
'I: 0.5443
rye 0 7698

Table 1.

-0.4444 -0.4 -03 -0277S -0.2 -0.1 0 0.1 0.5 1.0 2.0 5.0 ex)

--_._----- --_._- ------- - -----

1.2247 1.1756 1.1069 1.0955 1.0616 1.0275 1 0.9770 09102 0.8556 0.7862 06S07 0
0.5774 060S6 07027 0.7307 0.8223 09190 1 1.0702 L2872 I.4SI9 17580 2.2576 ec
0.7071 0.7154 077779 OSOOO 0.8730 0.9443 1 1.0456 11716 L2680 13821 1.5368 2

for 0.2778 :", :,,- 0.5

for 1 ~ ~ -0.2778
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Soft
Characteristic
(ii < 0)

Rigid
Characteristic
(ii > 0)

1.5 1------+------+-----==---I--~==1

----

i
111 = factor considering the effect of the nonlinearity

on the maximum displacement
0.5 t------112 = factor considering the effect of the nonlinearity on

the maximum acceleration (deceleration)
11p = 111112 = factor considering the effect of the nonlinearity

on the product of the maximum displacement
and maximum acceleration

-0.5 o 0.5

Dimensionless Parameter of Nonlinearity, ii

Fig. I. Factors considering the effect of the nonlinearity on the maximum displacement (liJ),
maximum acceleration (I/o), and the product of the maximum displacement and maximum accel

eration as functions of the dimensionless parameter of nonlinearity. 'i..

displacement, and therefore the factor IJp which considers the effect of the nonlinearity on
their product increases with an increase in the degree of the nonlinearity. In the case of a
spring with a soft characteristic, the maximum displacement increases and the maximum
acceleration decreases with an increase in the degree of nonlinearity. The cumulative effect
of the application of a soft spring is such that the factor IJpdecreases with the increase in
the degree of nonlinearity, when the parameter C( changes from zero to 0.4444, and increases
with the further increase in the nonlinearity. The minimum value of the factor IJp is equal
to .J2 = 0.7071 and takes place for C( = 0.4444.

Despite the adverse effect of a hard spring on the maximum acceleration, application
of such a spring might still be feasible, if the structural element is able to withstand high
accelerations and there is a strong need to reduce the "stopping distance" by any means.
As far as the spring with a soft characteristic is concerned, its application might be advisable
when the structural element to be protected is unable to withstand high accelerations, and,
at the same time, the restriction on the maximum displacement is not very stringent. As to
the product of the maximum displacement and the maximum acceleration, application of
a spring with a soft characteristic can result in an appreciable reduction in this characteristic
in comparison with a linear case.

It should be emphasized, however, that by no means the C( value shall be permitted to
exceed 1/2, otherwise an extremely undesirable "rigid impact" is possible. In order to assess
the degree of the acceptable negative nonlinearity, one can use the eqn (17), and write the
condition C( > ~ as follows:

W6 1
(39)H<--~

9 4a'

or

W6
(40)':1.< 4gH'

The condition (39) indicates that for a soft nonlinear spring, characterized by the linear
frequency of vibrations Wo and the parameter of nonlinearity 'Y., the maximum drop height
should not be allowed to exceed the value
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OJ~ I
H=-

g 40:'
(41)

The condition (40) indicates that a soft protective spring should be designed in such a way
that the parameter'Y. of nonlinearity does not exceed the value

OJ~
0: =----

4gH'
(42)

As has been found in the previous section, the mechanical behavior of a spring
protector with a soft characteristic depends on whether the zero velocity is reached below
or above the maximum value of the restoring force. This value is characterized by the
parameter i = ~ = 0.2778. If the nonlinear restoring force and the drop height are such
that the actual parameter a of nonlinearity is below this value, the maximum displacement
and the maximum acceleration occur at the same moment of time (which is the moment of
time when the velocity is zero). If the value of the parameter i exceeds 0.2778, then the
maximum acceleration occurs prior to the maximum displacement. In such a case the
maximum displacement takes place when the velocity of the system is zero, while the
maximum acceleration occurs when the velocity is still finite.

PROBABILISTIC APPROACH

Since the actual drop height H is never known with certainty, it should be treated as a
random variable. Let us assume, for instance, that this height is distributed in accordance
with the Rayleigh law:

(43)

Here H is the random drop height and HI' is its most likely value. The probability that the
drop height H exceeds a certain level H * is

P = P(H > H*) = f< f~(H) dH = e-H;"HI~.
"H.

Solving this equation for H *, we have:

(44)

Using the formula (42), we conclude that the spring characteristic of a protective soft spring
should be chosen in such a way that the parameter 'Y. of nonlinearity does not exceed the
value

'Y. = ------;===
4gHp.) -21n P

(45)

and the probability P should be chosen sufficiently low. This formula can be written also,
considering (17), as

I
i=-----.

2.) -21n P
(46)

As an illustration, consider the example examined in Suhir and Burke (1994). Let the
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K, kgfimm 50 100 150 200 250 300

W o, sec-' 1650 2307 2792 3187 3520 3810
CJ., lim' sec' 5.0631 x 10'" 19.350x 10'" 41.571 x 10'" 70.474 x 10"1 104.870 x 10'" 143.941 x 10'"

most likely drop height be Hp = 5 ft = 1.524 m, and the probability P of a rigid impact be
chosen as low as P = 0.05. Then, the formula (45) yields: a. = 0.006831 wri. The calculated
values of the parameter ':I. for different Wo values (1'1 values in Suhir and Burke (1994)) are
shown in Table 2. The formula (46), for P = 0.05, yields: a = 0.2043. Then, as follows
from the Table I and Fig. I, the application of a spring with a soft cubic characteristic
results in the increase in the maximum displacement by about 6%, in the decrease in the
maximum acceleration by about 18%, and in the decrease in their product by about 13%.

DESIGN CONSIDERATIONS: THE CASE OF A SOFT SPRING

The design considerations in the case of a soft spring are not as straightforward as in
the case of a spring with a hard characteristic.

Let the structural element protected by a soft spring, which is characterized by the
degree of nonlinearity ofa :s; 0.2778, be able to withstand an acceleration of the magnitude
Xnum while the maximum allowable displacement ("stopping distance") is XmaX' The objective
of the analysis which follows is to determine the required restoring force, i.e. the linear
frequency Wo and the parameter of nonlinearity a..

The eqn (9) can be written, in the case of a soft spring, as follows:

d I .• : I :.: I .4

d
'- (~.x +~wo.x --4:x.x ) = 0,

t - -

or

where C is the constant of integration. Since .X- = ~2gH, when x = 0, we obtain: C = gH,
and the phase diagram of the system in question is described by the equation

(47)

Since x = X m{/\' when .X- = 0, we obtain:

(48)

It is noteworthy that by using the notation X m{/\ = 1'/1 (~2gH!wll)' this equation leads to the
eqn (28), which was obtained on the basis of a different approach, namely, of an approach
using the complete solution to the equation of motion.

Solving the eqn (48) along with the equation

which can be obtained directly from (9), for the unknowns Wo and ':I., we find:

4gH
a. = -4- (I - I'/p),

X max

(49)

where the factor
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(SO)

considers the effect of the nonlinearity on the product xmaxxmax' Introducing (49) into (17),
we obtain the following relationship between this product and the dimensionless parameter
fi of nonlinearity:

(51)

Clearly, the linear spring constant (i.e. the spring constant In this case of small dis
placements) can be evaluated as

(52)

Thus, in order to evaluate the constant K (and the linear frequency wo) and the required
parameter tx of nonlinearity for the given maximum acceleration, ;(man the available
maximum displacement, X ma" and the given drop height, H, one should calculate first the
product IJp by the formula (SO), and then apply the formulas (49) and (52).

If a soft spring protector is characterized by the parameter of nonlinearity fi > 0.2778,
the maximum acceleration should be calculated by the formula (36) which, considering the
relationship (48), yields:

or

where the notation

6 27 .i'~ 2 .i'~ _
W o ~ -2 ~-Wo+27gH~- - 0,

X~I(l.r X,~ax

)

v J x~laX a Y Is = W(j 2 H' ~ ~ ~ ,g

(53)

(54)

(55)

is used. The tabulated values of the parameter ( = gH/xmaxx* are given in Table 3 and

Table 3.

o 0.1 0.2 0.4 0.6 0.8 0.9

55.113 18.37l 5.6250 2.500 1.l482 0.6804 o
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Fig. 2. Factor of the maximum displacement vs factor of the "quality" of the protective spring.

plotted in Fig. 2. After the frequency W o is determined, the rt. value can be easily calculated
as

4w8
rt.=--.

27.\'i
(56)

COMPARISON WITH AN IDEAL SHOCK ABSORBER

The requirement for an ideal shock absorber is rather straightforward: if the element
to be protected is able to sustain an acceleration of the magnitude a, an ideal absorber
should be able to provide this acceleration, for the minimum stopping distance, during the
entire time of "breaking". With the constant acceleration a, the displacement x = x(t) of
the element can be evaluated by the well-known formula:

Then the velocity .'i- = .~(t) is

.~- I )
X = v'2gHt-"2at-.

.x = V'2gH - at.

(57)

(58)

This expression, with the condition _x = 0, results in the following formula for the "break
ing" time:

With t = T, the eqn (57) yields:

V'2gH
T=---.

a
(59)
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H
a=g--.

X max

(60)

(61 )

The formula (61) enables one to evaluate the constant acceleration a for the given drop
height H and the required maximum stopping distance X ma ,. Note that in such a case the
velocity/displacement relationship of the shock absorbing material is characterized by the
equation

.Y = V2(gH-ax). (62)

This relationship can be obtained from the eqns (57) and (58) by eliminating the time t. It
is doubtful that a material with such a characteristic exists or can be easily developed.

From the formulas (60) or (61) we find that the product

(63)

of the maximum displacement and the maximum acceleration is half of the value in the
case of a linear spring.

As is evident from Table I, a nonlinear spring with a soft characteristic and a sufficiently
high level of the parameter '2. of nonlinearity can be quite effective. As has been shown
above, the product of the maximum acceleration in a soft spring protector, characterized
by ,lhe value of the dimensionless parameter 'i = ~ = 0.444, is by a factor of
1/V2 = 0.7071 lower than in the case of a linear system (although still by a factor of

J2 = 1.41 larger than in the case of an ideal shock absorber). However, if the drop height
H follows indeed the Rayleigh law of the probability distribution, then, using the formula
(46), we conclude that the probability that the above value of the parameter 'i is exceeded
is as high as P = 0.755. Therefore, if the maximum drop height is not known with certainty
and obeys the Rayleigh law of the probability distribution, the advantages of a soft spring
cannot be utilized to the full extent because of the high probability of a rigid impact. It
could very well be, however, that the actual law of the probability distribution for the drop
height is different and, hopefully, more favorable than the rather conservative Rayleigh law
used in this analysis.

As an illustration, examine a situation when the drop height is H = 5 ft = 1.524 m,
the weight of the element to be protected is P = 0.5 kgf, and the allowable accel
eration is a = 2000 g. If a linear spring is used, the frequency of vibrations is W o
= ';;ma,/J2gH = 35881!sec, and the spring constant is K = MW6 = 6561 54kgf/m. The maxi
mum stopping distance with such a spring is :l'ma\ = j2gH/wo = 1.52 mm. In the case
of an ideal viscous shock absorber, the stopping distance is only half of this value:
X max = gH/a = 0.762 mm. In the case of a nonlinear spring with a soft cubic characteristic,
one can choose, using a conservative approach, '2. = 0.2043 (which corresponds to the
probability P = 0.05 that the value 'i = 0.5 is exceeded). Then, solving the eqn (51) for the
I7p value, we obtain: 171' = (I - 2,'2.)/( I - '2.) = 0.7432, and theformula (50) yields: :l'max = 1.133
mm. This value is by a factor of 0.743 smaller than the maximum displacement in the case
of a linear spring, although by a factor of 1.487 greater than the maximum displacement in
the case of an ideal viscous shock absorber.

EFFECT OF VISCOUS DAMPING

In the previous section we compared a soft nonlinear spring with an ideal viscous
shock absorber. Strictly speaking, we used a "'double standard" when making such a
comparison: the capabilities of a nonlinear undamped system were evaluated against the
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Table 4.

0 0.1 0.2 0.3 0.4 0.5 06 0.8 1.0

'1, 0.8226 0.7561 0.6715 0.6029 0.5463 0.4988 0.4240 0.3679

'1, 0.8801 0.8209 0.8134 0.8635 1.0 1.2 1.6 2.0
'7,,='1,'1' 0.7592 0.6207 0.5462 0.5206 0.5463 0.5986 0.6784 0.7358

capabilities of a highly damped and, in effect, also nonlinear system. Let us assess whether
viscous damping can have a significant effect on the dynamic response. In the analysis
carried out for a linear system (Suhir (1995)) the formulas for the maximum displacement
and the maximum acceleration were obtained as a result of solving the equation

as follows:

(64)

Here the factors r/I and 1]2, considering the effect of viscous damping on the maximum
displacement and the maximum acceleration, can be ~valuated by the formulae:

1]?-1

(65)

(66)

where

r R
I] =-=

(1)0 2~KM

is the damping ratio, and R is the damping coefficient. The calculated factors I]h 1]2, and
their product 1]" = 1]11]2 are shown in Table 4 and plotted in Fig. 3. As evident from the
calculated data, moderate damping can bring down substantially the product 1]" of the
maximum displacement and the maximum acceleration. The minimum 1]" value takes place
for I] = 0.4 and is only 1]" = 0.5206. Although a detailed analysis of the effect of viscous
damping on the response of a nonlinear system is beyond the scope of this study, there is a
reason to believe that damping can improve appreciably the dynamic response of a struc
tural element protected by a spring with a soft characteristic, perhaps, making it even
competitive with an ideal absorber.

FORMALIZATION OF THE OBTAINED RESULTS ON THE BASIS OF THE PHASE
DIAGRAM ANALYSIS

In the previous analyses, it has been shown that the maximum displacements and the
maximum accelerations can be obtained either on the basis of the complete solutions to the
governing equations of motion, or directly from the equation
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11 1 = factor considering the effect of viscous damping
on the mBJdmum displacement

112 = factor considering the effect of viscous damping
on the mBJdmum acceleration

11p = 11 1112 = factor considering the effect of viscous
damping on the product of the maximum
displacement and maximum acceleration ----,~+-------I

11p-----

o 0.2 0.4 0.6 0.8

Dimensionless Parameter of Viscous Damping, 11

Fig. 3. Factors considering the effect of viscous damping on the maximum displacement (til)'
maximum acceleration (II,). and the product of the maximum displacement and maximum accel

eration as functions of the dimensionless parameter of viscous damping, tI.

for the phase diagram. Whatever the approach, we treated the cases of a hard and a soft
spring separately to make the analyses physically clear and meaningful, and to avoid
confusion. In the treatment which follows we formalize the obtained results using the phase
diagram approach which readily permits one to interpret these results for either hard or
soft nonlinearity, without "switching" the definition of the parameter of nonlinearity from
positive to negative.

Introducing dimensionless displacement .x = wo/J2gH and dimensionless time
7 = Wof, the above phase diagram equation can be written as

d.x / _, 1_ -4
d7 = vi l-x'-2:XX , (67)

where the dimensionless parameter of nonlinearity Ii. is expressed by the formula (17).
Clearly, the dimensionless acceleration is

(68)

The Ii. value in the eqns (67) and (68) can be either positive (hard spring) or negative (soft
spring). The maximum dimensionless displacement '11 = ."'max takes place when the velocity
d.y/d7 is zero. This leads to the eqn (16) and to the formula (18). As evident from this
formula, the vibrational character of the motion ceases to exist for Ii. ::::; - 0.5. This formula
indicates also that the factor '71 (the maximum dimensionless displacement Smax) changes
from J'2 to zero, when the parameter of nonlinearity changes from -0.5 to infinity.

The dimensionless acceleration (deceleration), a, for the moment of time when the
displacement.y reaches its maximum value '71 can be obtained from (68) and (18) as
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2(1+25:)

~+I
(69)

As to the maximum dimensionless acceleration (deceleration), amax> it is equal, as evident
from (68), to

and occurs when the displacement R is equal to

1
R*=-=.

J-35:

(70)

(71 )

Equating the expressions (69) and (70), and solving the obtained equation for the a. value,
we find: 5: = -~ = -0.2778. Hence, the maximum dimensionless acceleration (decel
eration) '12 = amax occurs simultaneously with the maximum displacement in the systems
for which the parameter of nonlinearity a. is larger than - 0.2778, otherwise the maximum
dimensionless acceleration '12 occurs earlier than the maximum dimensionless displacement
'11' Thus,

1
Y 2(1 +2a), for -0.2778::( a. < ex;

V 1+25:+ 1
'12 =

2
~==, for -0.5::(:J.::( -0.2778
3y / -35:

(72)

The dimensionless velocity d.xjdl at the moment of time when the dimensionless dis
placement .x is equal to the value .x* is as follows:

(73)

For a. = -0.2778 the maximum values of the dimensionless displacement and acceleration
still take place simultaneously and are '11 =~ = 1.0954 and 112 = ~~ = 0.7303, respec
tively. In the extreme case, i = - 0.5, the dimensionless displacement R* = ~ = 0.8165,
corresponding to the maximum dimensionless acceleration '12 = ~~ = 0.5443 is sub
stantially smaller than the maximum dimensionless displacement 111 = J2 = 1.4142, while
the velocity d.xjdl at this moment of time, is as high as d.xjdl = ~ = 0.6667, and is closer to
the initial velocity (which is equal to unity), than to zero (~hich corresponds to the
maximum displacement).

The product '1P = 111112 can be calculated as

- 0.2778 ::( i ::( 'X

(74)

for -0.5::(5:::( -0.2778

This product is equal to '1~= 2 for very large i, is equal to I]p = ~ = 0.8 for a. = -0.2778,

and is equal to '1P = 4j3J3 = 0.7698 for 5: = -0.5. The analysis of the second formula in
(74) indicates that the factor '1 p reaches its minimum value '1P = IjJ2 = 0.7071 for
Iv = -~ = -04444v. 9 • •
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CONCLUSIONS

The following major conclusions can be drawn from the performed analysis:

-Application of a nonlinear spring with a hard characteristic results in an appreciable
decrease in the maximum displacement and in a considerable increase in the maximum
acceleration (deceleration), compared to the linear case, The cumulative effect of a
hard spring is such that the product of the maximum displacement and the maximum
acceleration (which can be considered as a suitable criterion of the efficiency of the
shock protector) increases as well, Therefore employment of such a spring can be
feasible for elements which are able to withstand high accelerations, while the "stopping
distance" has to be made small by any means,

-Application of a nonlinear spring with a soft characteristic results in an appreciable
increase in the maximum displacement and a substantial decrease in the maximum
acceleration (deceleration), in comparison with the linear case, The cumulative effect
of a soft spring is such that the product of the maximum displacement and the
maximum acceleration decrease with an increase in the degree of nonlinearity, There
fore the use of such a spring can be recommended for structural elements which cannot
withstand high accelerations (decelerations), while the requirement for a short stopping
distance is not very critical.

--If the maximum drop height is not known with certainty, the advantages of a soft
spring cannot be utilized to a full extent because of the possibility of a "rigid impact",
In such a case a probabilistic approach can be effectively used to design a soft spring
with a sufficiently low probability of such an impact. In this connection, it should be
emphasized that future work should include evaluation of the probability distribution
for the actual drop height It could happen that this function could differ appreciably
from, and, perhaps, be more favorable than, the Rayleigh law,

-It is believed that the trend found m this analysis hold, at least qualitatively, for a
broad class of soft and hard nonlinear springs, not necessarily with cubic restoring
forces,
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